翻訳と辞書
Words near each other
・ Wake, Virginia
・ Wake-on-LAN
・ Wake-on-ring
・ Wake-robin
・ Wake-sleep algorithm
・ Wake-Up Call (album)
・ Wake-up call (service)
・ Wake-up robot problem
・ Wake-Walker
・ Wake-Walker v SS Colin W Ltd
・ Wake/Lift
・ Wakeboard boat
・ Wakeboarding
・ Wakeboarding HD
・ Wakebridge
Wakeby distribution
・ Waked
・ Wakedafucup
・ Wakeel Allah
・ WaKeeney, Kansas
・ Wakefern Food Corporation
・ Wakefield
・ Wakefield (band)
・ Wakefield (disambiguation)
・ Wakefield (Holly Springs, Mississippi)
・ Wakefield (MBTA station)
・ Wakefield (Metro-North station)
・ Wakefield (surname)
・ Wakefield (UK Parliament constituency)
・ Wakefield and District Football Association League


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Wakeby distribution : ウィキペディア英語版
Wakeby distribution

The Wakeby distribution is a five-parameter probability distribution defined by the transformation
:X =\xi + \frac (1 - (1-U)^) - \frac (1 - (1-U)^)
where U is a standard uniform random variable. That is, the above equation defines the quantile function for the Wakeby distribution.〔(【引用サイトリンク】title=Dataplot reference manual: WAKPDF )
The parameters β, γ and δ are shape parameters. The parameters ξ and α are location parameters.
The Wakeby distribution has been used for modelling flood flows. This distribution was first proposed by Harold A. Thomas Jr., who named it after Wakeby Pond in Cape Cod.
The following restrictions apply to the parameters of this distribution:
* \beta + \delta \ge 0
* Either \beta + \delta > 0 or \beta = \gamma = \delta = 0
* If \gamma > 0 , then \delta > 0
* \gamma \ge 0
* \alpha + \gamma \ge 0
The domain of the Wakeby distribution is
* \xi to \infty, if \delta \ge 0 and \gamma > 0
* \xi to \xi + (\alpha/ \beta) - (\gamma/ \delta) , if \delta < 0 or \gamma = 0
With three shape parameters, the Wakeby distribution can model a wide variety of shapes.
The cumulative distribution function is computed by numerically inverting the quantile function given above. The probability density function is then found by using the following relation (given on page 46 of Johnson, Kotz, and Balakrishnan):
:f(x) = \frac
where F is the cumulative distribution function and
:t = (1 - F(x))^
An implementation that computes the probability density function of the Wakeby distribution is included in the Dataplot scientific computation library, as routine WAKPDF.〔
== See also ==

* Generalized Pareto distribution

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Wakeby distribution」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.